Maximum-Likelihood Power-Distortion Monitoring for GNSS Signal Authentication

نویسندگان

  • Jason N. Gross
  • Cagri Kilic
  • Todd E. Humphreys
چکیده

We propose an extension to the so-called PD detector. The PD detector jointly monitors received power and correlation profile distortion to detect the presence of GNSS carry-off-type spoofing, jamming, or multipath. We show that classification performance can be significantly improved by replacing the PD detector’s symmetric-difference-based distortion measurement with one based on the post-fit residuals of the maximum-likelihood estimate of a single-signal correlation function model. We call the improved technique the PD-ML detector. In direct comparison with the PD detector, the PD-ML detector exhibits improved classification accuracy when tested against an extensive library of recorded field data. In particular, it is (1) significantly more accurate at distinguishing a spoofing attack from a jamming attack, (2) better at distinguishing multipathafflicted data from interference-free data, and (3) less likely to issue a false alarm by classifying multipath as spoofing. The PDML detector achieves this improved performance at the expense of additional computational complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GNSS Signal Authentication via Power and Distortion Monitoring

We propose a simple low-cost technique that enables civil Global Positioning System (GPS) receivers and other civil global navigation satellite system (GNSS) receivers to reliably detect carry-off spoofing and jamming. The technique, which we call the Power-Distortion detector, classifies received signals as interference-free, multipath-afflicted, spoofed, or jammed according to observations of...

متن کامل

GNSS Spoofing Detection and Mitigation Based on Maximum Likelihood Estimation

Spoofing attacks are threatening the global navigation satellite system (GNSS). The maximum likelihood estimation (MLE)-based positioning technique is a direct positioning method originally developed for multipath rejection and weak signal processing. We find this method also has a potential ability for GNSS anti-spoofing since a spoofing attack that misleads the positioning and timing result w...

متن کامل

A Testbed for Developing and Evaluating GNSS Signal Authentication Techniques

An experimental testbed has been created for developing and evaluating Global Navigation Satellite System (GNSS) signal authentication techniques. The testbed advances the state of the art in GNSS signal authentication by subjecting candidate techniques to the strongest publicly-acknowledged GNSS spoofing attacks. The testbed consists of a real-time phase-coherent GNSS signal simulator that act...

متن کامل

Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume

Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (...

متن کامل

Security Analysis of Lightweight Authentication Scheme with Key Agreement using Wireless Sensor Network for Agricultural Monitoring System

Wireless sensor networks have many applications in the real world and have been developed in various environments. But the limitations of these networks, including the limitations on the energy and processing power of the sensors, have posed many challenges to researchers. One of the major challenges is the security of these networks, and in particular the issue of authentication in the wireles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.04501  شماره 

صفحات  -

تاریخ انتشار 2017